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Abstract
1
 

This paper addresses the problem of generating good example 

contexts to help children learn vocabulary.  We construct 

candidate contexts from the Google N-gram corpus.  We 

propose a set of constraints on good contexts, and use them to 

filter candidate example contexts.  We evaluate the 

automatically generated contexts by comparison to example 

contexts from children’s dictionaries and from children’s 

stories.   

1. Introduction 

Vocabulary plays a critical role in reading comprehension.  “A 

reader who can pronounce a word but does not know its 

meaning or crucial facts about it is at a disadvantage in 

comprehending the text in which it occurs” [1]. 

This paper focuses on one particular aspect of vocabulary 

learning – learning word meanings from example contexts.  

Word meaning includes both denotation (explicit definition) 

and connotation (implied meaning and associations) [2].  

Readers must acquire both aspects, so effective vocabulary 

instruction combines explicit explanation with multiple 

encounters in varied contexts [3].  

Contexts give clues to semantics but also convey many 

other different lexical aspects, such as part of speech, 

morphology, and pragmatics, which help enrich children’s 

word knowledge base.  However, not all contexts are equally 

useful; in fact, most natural contexts are insufficient to infer 

word meaning [4], especially for younger readers. 

Accordingly, one key issue in vocabulary instruction is 

how to find or create good example contexts to help children 

learn a word.  Context examples are usually created by 

teachers, lexicographers, or occasionally educational 

researchers [3, 5].  A human expert may generate excellent 

examples, but takes time, costs money, and may not be 

available when needed.  Also, human-generated contexts are 

shaped by the cognitive retrieval and production processes of 

a person who knows the word, and may therefore overlook 

important uses.  In contrast, computer-generated contexts can 

provide systematic, comprehensive coverage, and address 

specific learning goals. 
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This paper describes a system that generates example 

contexts to help children in grades 2-3 learn targeted 

vocabulary, by using language resources and multiple NLP 

technologies. The rest of this paper is organized as follows.  

Section 2 describes how our context generator uses Google 

N-gram data [6] to generate candidate contexts.  Section 3 

describes constraints on good contexts, and filters to 

operationalize them.  Section 4 evaluates automatically 

generated example contexts against human-authored 

examples.  Section 5 discusses limitations and future work.  

Section 6 concludes.   

2. Context generation 

Our contexts are sequences of overlapping Google n-grams. 

2.1. Data set 

The Google N-gram data set [6] contains billions of n-grams 

and their frequencies, based on over one trillion words of text 

extracted from public web pages and segmented into 

sentences.  It has been used in many areas, including spelling 

correction and machine translation.  The data set contains n-

grams for n from one to five.  We use five-grams in generating 

contexts, as five-grams are the longest so they provide more 

information about the target word.  The data set contains all 

1,176,470,663 five-grams that appeared at least 40 times, e.g.: 

advantage in a competitive </S>                                 42 

advantage in a competitive environment                     66 

advantage in a competitive job 69 

advantage in a competitive market 219 

advantage in a competitive world 94 

Here </S> is the symbol for the end of a sentence, and the 

number after each five-gram is its frequency. 

The entire data set is about 200 GB including indices, so 

we extract only the five-grams containing target vocabulary 

words to teach, and then save the five-grams for each target 

word in a separate database table to allow efficient access. 

2.2. Generation method 

Given a target vocabulary word, e.g. extinct, the context 

generation process works as follows.  First, choose a five-

gram containing the target word as the initial context, e.g.: 

Dinosaurs have been extinct for millions of years 

Then, repeatedly extend it one word to the left or right by 

choosing a five-gram (underlined here) that matches the first 

or last four words, e.g.: 

Dinosaurs have been extinct for millions of years 

Dinosaurs have been extinct for millions of years 



Dinosaurs have been extinct for millions of years 

Continue until no further extension is possible.  Our generator 

uses only five-grams containing the target word, so it 

generates sentences at most nine words long, with the target 

word in the middle and four words on each side of it. 

This method is based on the consistency assumption that 

if one five-gram overlaps with another by four words, then 

both of them came from the same set of sentences in the 

original corpus.  When this heuristic assumption holds true, 

the method reconstructs part or all of one of these sentences.  

However, when it fails, the method can generate a novel 

word sequence.  We call this phenomenon “crossover” 

because it combines five-grams from different sentences.  The 

resulting sequence is still locally consistent because each 

successive five words constitute an authentic five-gram. 

On the positive side, this ability to generate novel 

sentences can potentially produce example contexts that 

improve on the original sentences, for example by 

streamlining them to eliminate undesirable complexity.  On 

the negative side, crossover can produce global 

inconsistencies, as we will see later.  Fortunately, the 9-word 

limit restricts the opportunity for crossover. 

2.3. Relation to prior work 

Some related work has automated the generation of example 

sentences.  Dowding et al. [7] used a grammar to generate 

example sentences containing specific words (e.g., pressure 

and commander in the sentence Measure the pressure at the 

commander’s seat) for targeted help in spoken dialogue 

systems.  Our work involves a different population (children), 

purpose (vocabulary development), and method (generation 

using a corpus of n-grams). 

Other related work [8-11] has automated the selection of 

example sentences for vocabulary learning and assessment.  

Some selection criteria [10, 11] resemble constraints we 

impose on the generation process.  However, the selection 

methods extract complete sentences from an existing 

language corpus, but our method generates context sentences. 

So far as we know, ours is the first study that uses Google 

five-grams to generate example sentences.  N-grams aggregate 

information across sentences, so the frequency of n-grams 

reflects the typicality of contexts and usage.   In contrast, the 

corpus frequency of most complete sentences is 1, which does 

not indicate whether or not their word usage is typical. 

3. Context constraints 

How can we ensure the generated contexts are good for 

vocabulary learning?  We identified several constraints on 

good contexts, based partly on expert knowledge and partly 

on analyzing why some generated contexts were bad. 

Sections 3.1-3.7 describe each constraint and 

operationalize it as one or more heuristic filters.  These filters 

eliminate contexts that violate the constraint, or prefer 

contexts that satisfy it better or more probably.  We compiled 

the filters into a heuristic search procedure using 

transformations described in [12], but space limitations 

preclude a detailed description of the resulting procedure. 

3.1. Comprehensible to children  

We want to generate contexts that assist the vocabulary 

development of children in primary school.  For a context to 

be useful, the child must understand it.  If the context contains 

many unfamiliar words besides the target word, the child will 

not understand the context well enough for it to help in 

learning the target word.  For example, the context It is time 

to declare victory and go home is reasonably understandable, 

assuming the child knows the word victory.  In contrast, any 

context containing …penalties of perjury solemnly declare… 

is useless for teaching declare to a child who does not know 

the words penalties, perjury, or solemnly. 

One comprehensibility filter excludes examples 

containing more than two words rated above grade level 2 

according to two leveled word lists [13, 14].  This threshold 

could easily be changed to fit students’ reading level.  

Another filter removes examples containing relative pronouns 

(such as who or that), in order to limit sentence complexity. 

3.2. Grammatically correct and complete 

Good contexts should be complete, grammatical sentences. 

Some generated candidates are not grammatical, such as the 

list Southpaw Stout Dem Blog The Scarlet.  Some candidates 

are incomplete sentences, such as Jennifer is very anxious to 

know about the. 

To filter out incomplete or ungrammatical contexts, we 

use the Link Grammar Parser [15], a syntactic dependency 

parser, as a grammar checker.  The parser rejects any context 

it fails to parse as syntactically valid English.  A second filter 

requires that generated sentences must either start with <S> 

or a capitalized word, or end with </S> or punctuation.  

Another filter excludes sentences that end with modal or 

auxiliary verbs.  The last two filters help favor complete 

sentences.   

3.3. Sense-appropriate 

A good context is consistent with target word meaning.  A 

context that uses a different sense of the target word than the 

meaning to be taught is confusing, not helpful. 

To filter out contexts where a word has a part of speech 

incompatible with its target meaning, the context generator 

checks the part of speech assigned by the Link Grammar 

Parser; if it does not match the target meaning, the filter 

excludes the context.  For example, if the target meaning of 

stout is sturdy, this filter eliminates the context Grant Stout 

added 16 points because it uses stout as a (proper) noun. 

A more sophisticated version of this filter would also 

exclude contexts with the right part of speech but a different 

sense of the target word.  This capability would involve 

identifying the word sense used in the context and deciding if 

it is consistent with the target meaning.  

3.4. Informative about word meaning 

A highly informative context imposes strong semantic 

constraints on the target word.  Experimental study confirmed 

that “the degree of semantic constraint for individual contexts 

played a substantial role in learning word meanings” [3]. 

The context generator operationalizes semantic constraint 

as multiple filters.  One filter prefers longer sentences because 

they tend to provide richer information.   Another filter 

prefers content words (such as nouns and verbs) because they 

tend to provide more meaning than function words.  It 

eliminates sentences that contain fewer than three content 

words.  A third filter specifically prefers words related to the 



target word, i.e., that co-occur with the target word in many of 

the same five-grams in the corpus.  It requires the initial five-

gram to contain one or more related words. 

Overall, these filters prefer sentences that contain more 

words overall, more content words, and more related words.  

For example, consider these two contexts: 

Find the strength and courage to take risks 

We know it takes courage to do so 

Both contexts are 8 words long, but the filters prefer the first 

context because it contains more content words, including 

strength and take, which are related to courage. 

3.5. Ordinary prose 

Good contexts use normal, classroom-appropriate English.  

However, we noticed that some of the generated contexts 

were very web specific, and likely unfamiliar to young 

children, e.g., a Merchant ID and password.  

A filter to avoid web jargon eliminates contexts 

containing words much more common on the web than in 

print, such as copyright, password, and download, whose 

unigram frequencies in the Google corpus are 

disproportionally higher than in a conventional text corpus.  

Similar filters exclude sentences containing words from a list 

of taboo words, or special symbols such as @; sentences 

containing capitalized words other than the first word, the 

target word, or named entities; and sentences with more than 

four consecutive numerals or capitalized words. 

3.6. Typical of usage and situation 

Typicality is an important property of good contexts.  They 

should show how words are commonly used, and in what 

situations.  For example, celebrate is often used in situations 

like birthdays and anniversaries.  We rely on five-gram 

frequency to quantify typicality. 

Accordingly, one filter prefers high-frequency five-grams. 

3.7. Varied and not redundant 

Children need to see a word in several varied contexts to 

decontextualize their knowledge of the word’s meaning and 

acquire enough retrieval cues to access it reliably and 

efficiently [3].  The Google corpus is large enough to generate  

diverse contexts for a target word, e.g.: 

Members are asked to declare that you are 18 

He was forced to declare a state of emergency 

It is time to declare victory and go home 

However, some generated contexts are very similar, e.g.: 

Just declare victory and go home 

We should declare victory and go home 

It’s time to declare victory and go home 

A filter to eliminate such redundancy clusters the generated 

contexts and picks only one from each cluster. 

4. Evaluation 

How good are the generated contexts?  Section 4.1 describes 

how we evaluated them.  Section 4.2 presents the results.   

4.1. Methodology 

To evaluate our method, we selected 10 target words, 

generated contexts for them, and compared the generated 

contexts against human-authored contexts. 

To choose the words, we started with the 789 words in 

Reading Tutor stories that our vocabulary expert Dr. Margaret 

McKeown had classified as “Tier 2” words [4], i.e., words 

used in many domains but unknown to most children, and 

thus important to teach.  Of the 15 such words that occurred 

in exactly two stories, once in each story, we excluded 5 

words with multiple parts of speech, and chose the other 10: 

anxious, courage, declare, extinct, merchant, remarkable, 

slender, stout (because we didn’t think of its noun sense), 

suspicious, and tremendous. 

Of the contexts generated for each of these target words, 

we used the 6 rated highest by the context generator.  For 

comparison we chose two types of human-authored contexts. 

As a sample of naturalistic contexts in which the child would 

encounter the word during normal reading, we used the two 

Reading Tutor story sentences containing the word.  As a gold 

standard, we used all 1-3 example sentences from the   

WordSmyth children’s dictionary (www.wordsmyth.net), 

crafted to illustrate the meaning of each word sense listed.  

The three source types totaled 98 contexts:  57 generated 

contexts, 20 story sentences, and 21 dictionary sentences. 

Dr. McKeown scored all 98 sentences, blind to source 

type, on a five-point Likert scale (1=bad, 3=OK, 5=good), 

both in general quality, and on three specific aspects that 

influence it: (1) good use of words, i.e. correct or meaningful 

use in the intended target sense; (2) the degree to which the 

context is constraining, or reveals elements of the word 

meaning; (3) comprehensibility to children based on other 

words or concepts in the context, or syntactic complexity. 

4.2. Results and discussions 

Table 1 shows mean scores and standard errors for each type 

of context.  ANOVA showed significant main effects for 

context source on all four measures. Pairwise comparison 

showed that dictionary contexts surpassed automatically 

generated examples in general score (p<0.001), in good use of 

words (p<0.05), in constraining context (p<0.05), and in 

comprehensibility to children (p<0.05).  There was also a 

trend for the story sentences to be better than the generated 

contexts in general score (p=0.051).  No other differences 

were significant. 

Table 1: Expert scoring of contexts 

Evaluation criteria 

Mean (Standard Error) 

Auto  

(all) 

Auto 

(top half) 
Story Dictionary 

General score 2.5 (0.21) 3.9 (0.15) 3.4 (0.28) 4.1 (0.21) 

Good use 3.4 (0.22) 4.2 (0.21) 4.0 (0.28) 4.4 (0.20) 

Constraining 

context 
3.2 (0.21) 3.9 (0.19) 3.6 (0.21) 4.1 (0.19) 

Comprehensibility 2.7 (0.23) 4.2 (0.18) 3.5 (0.33) 4.1 (0.25) 

 

The top-scored half of the generated sentences compared 

favorably to story sentences, which suggests that refining the 

generator to filter out the bottom half would make its output 

as good as story sentences.  Section 5 analyzes the bottom 

half to identify the main problems.  However, predictions of 

the resulting performance are overly optimistic because we 

“tested on the training data” in that we designed some of the 

filters to eliminate bad contexts generated for the 10 test 

http://www.merchantanywhere.com/tcdemo/login.htm
http://www.wordsmyth.net/


words.  This approach made sense as a first step; future work 

will test performance on unseen words. 

5. Limitations and future work 

We identified problems in automatically generated contexts 

on multiple levels, and possible approaches to some of them. 

On the syntactic level, some generated sentences are 

incomplete or ungrammatical.  To fix incomplete sentences, 

we plan to concatenate n-grams that start with <S> or end 

with </S> to lengthen and complete them.  To filter out 

ungrammatical sentences more thoroughly, a better grammar 

checker would help.  We also plan to explore the syntactic 

structure of generated sentences and restrict them to satisfy 

some syntactic constraints.  For example, we could stick to 

sentences with simple parses such as [S [NP VP]] to improve 

comprehensibility, or with syntactic structures characteristic 

of more informative contexts.  Such structures might be 

induced by analyzing a sufficiently large set of good 

sentences, such as a corpus of dictionary examples.   

On the semantic and pragmatic levels, we found long-

distance mismatches in some generated sentences, whose left 

half is not consistent with their right half, due to crossover.  

For example, I will have a tremendous impact on my life is 

semantically acceptable, but pragmatically problematic due to 

being self-evident.  Another issue pertains to our particular 

application: non-kid-friendly sentences should not be used for 

vocabulary learning.  Non-kid-friendly sentences include 

contexts unfamiliar to children, e.g. legal statements, and 

contexts that are inappropriate.  Although we filter out 

sentences containing taboo words, some generated contexts 

are still inappropriate even though each word is fine, e.g. She 

reaches her slender fingers towards my exploding.  Human 

judgment will likely remain necessary to detect such cases. 

Another type of low-scored sentence is the spuriously 

high frequency context, e.g. Please check the merchant store.  

Such sentences are composed of five-grams with high 

frequency, and chosen by our context generator because it 

uses average five-gram frequency as a proxy for typicality of 

usage.  However, their high frequency is not because they are 

actually very common in English but rather due to replication 

of documents on the Web.  To combat this effect, we will start 

with high-frequency trigrams, extending them with five-grams.  

Because trigrams are shorter than five-grams, they occur 

much more often, so their frequencies are less distorted by 

replicated sentences, and hence reflect typicality better. 

6. Conclusion 

This paper makes three contributions to automated generation 

of good example contexts to help children learn vocabulary.  

First, we introduce the problem of automatic context 

generation for learning vocabulary.  Although the importance 

of context to learning vocabulary is well-known, context 

examples used in education have been created by hand and 

we know of no prior work to automate their generation. 

Second, we show how to generate contexts by combining 

Google five-grams.  We identify several constraints on good 

example contexts, and filters to operationalize them.  

Third, we evaluate against dictionary examples and story 

sentences based on expert scoring. The top half of the 

generated contexts average as good as or better than the story 

sentences in which children would normally encounter them.   
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